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compounds 
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Marie Curie, 1 place Jussieu 75730, Paris Cedex 05. France 
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Abstmct. Taking account of an Umklapp term in the Landau free energy. we show the 
splitting of the amplitudon and phason branches. The features and symmetry of the new 
modes have been derived. Couplingbetween phasemodes andacousticmodesin two A,BX,- 
typecrystals has beenstudied. The downwardstepobserved in theelasticmnstant C,, in the 
improper ferroelectric K2Se0, near the lock-in phase transition has been attributed to 
coupling between a transverSe acoustic and a high-frequency phason, while the decrease in 
the same elastic constant in the incommensurate phase of the improper ferroelastic com- 
pound TMAI-CU has been attributed to coupling between a transverse acoustic and a low- 
frequency phason 

1. Introduction 

In what follows we are interested in the phason contribution to the acoustic anomalies 
of potassium selenate and tetramethylammonium tetrachlorocuprate (TMAT-CU) which 
belong to the large incommensurate A2BX4 family. The AZBX,-type crystals are ortho- 
rhombic with space group Pnam (Dit) in the high-temperature phase (normal). On 
cooling, some of them undergo an incommensurate structural phase transition before 
becomingferroelectric or ferroelastic in the commensurate phase (locked). In the group 
{N(CH,),},BCI, the copper compound (TMAT-CU) shows a particular behaviour. The 
incommensurate<ommensurate transition is ferroelastic (Sawada et ai 1980a). The 
elasticconstant C,, shows apronounced anomaly in the incommensurate phase (Sawada 
et ai 1980b, Rehwald and Vonlanthen 1985). The same elastic constant has a different 
behaviour near the lock-in phase transition in potassium selenate (Rehwald and Von- 
lanthen 1981) which is ferroelectric. 

Let us summarize some aspects of these two compounds. lS2Se0, is the most studied 
member of the A,BX, family. At T = Ti it undergoes a second-order phase transition 
induced by a soft phonon (Iizumi et a1 1977) with wavevector go = (1 - 6)a*/3.  
6 decreases with decreasing temperature and vanishes discontinuously at T,. The crystal 
then locks into a polar orthorhombic superstructure with the space group Pna2, (C;,). 
Few experimental studies have been devoted to the study of TMAT-CU. No phonon 
softening has been observed and the displacive character of the transition is not estab- 
lished. The parameter 6 is almost temperature independent (Gesi and Iizumi 1980) 
in the incommensurate phase. It vanishes abruptly at T,. The superstructure of the 
ferroelastic phase is monoclinic with the space group P12Jal (C;,,). In both crystals the 
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lattice parameter along the a axis is tripled in the locked phase. The behaviour of 
the elastic constant C,, in K2Se04 and TMAT-CU has been interpreted (Rehwald and 
Vonlanthen 1981, 1985. Lemanov 1986, Sawada ef a[ 1980b) in terms of a coupling 
between the shear deformation es and incommensurate modes with wavevector 6a* 
without taking into account the existence of a gap at qo i 6a* in the phason and 
amplitudon branches. 

In the next section we show that such acoustic anomalies can be interpreted in the 
framework of the Landau theory if we take into account Umklapp terms such as 
(Q(qo))4Q(qo + da*)Q(qo + 6a*)  in the free-energy expansion. One can also extract, 
from the fourth-order coupling term between the first- and the second-order parameter 
(polarization or strain), Umklapp terms equivalent to the above-mentioned term and 
in which ( Q ( S ~ ) ) ~  is replaced by (P(da*))(Q(qo)). These terms introduce gaps in the 
phason and amplitudon branches at wavevector ha*. However, numerical evaluation 
(Sannikov and Golovko 1984). in the case of KZSe04, shows that the first Umklapp term 
isthemostimportant. Weshowalsothat theinstabilityat T =  T,ofthephason belonging 
to the lower branch with ungerade (U)  character in the case of K2Se04 and gerade (g) 
character in the case of TMAT-CU induces a ferroelectric or ferroelastic lock-in phase 
transition according to its character. Acoustic anomalies induced by the coupling 
between acoustic modes and phase modes are discussed in section 3. We show par- 
ticularly that the acoustic anomaly of C, in K,Se04 is mainly due to the behaviour of 
the phason with wavevector 6a* belonging to the upper branch. It has a E,, symmetry 
as the shear strain e5 and is Raman active in the c(a, c)b geometry. The symmetry of 
phase modes at da* i s  interchanged in the case of TMAT-Cu. The acoustic anomaly of C,, 
in this compound is due to a E,,-type phonon belonging to the lower phason branch. 

2. Phonon spectrum 

The splittingof the phase mode branch has been treated analytically by McMillan (1977) 
and Bruce and Cowley (1978). The amplitude mode branch has been neglected by them. 
We develop below an analytical solution of this problem taking into account the two 
branches. For this purpose the order parameter ischosen insuch a way that it describes 
the normal-incommensurate transition. Such an order parameter is the normal co- 
ordinate of the incommensurate distortion Qqo belonging to the & small group 
representation, with qo = (1 - 6)a* /3 .  Then the relevant free energy can be written in 
the form (up to the fourth-order terms) 
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F =  Q2O(qu)Q(qo)Q*(So) + b I Q ( ~ o ) Q " ( ~ o ) l 2  (1) 

Q;(d = a,(T - +fd qi = (4 T 40)'. 
with 

f; are constants characterizing the soft-mode dispersion surface Q,(q) near 40. TI is the 
actual temperature of the normal-incommensurate phase transition. The increase in 
energy due IO the etementary excitations can be written in the diagonalized form 

6 F =  4 [Q?,(q)A(q)A*(q) + Q?e(q)dq)p?*(q)l (2) 
9 

in which Qa(q) and Q,(q) are the frequencies of the amplitudon and the phason modes, 
respectively (Bruce and Cowley 1978): 

Q?t(q) =2b$  + f d  ( 3 4  
QiG) = f d .  (36) 
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A(q)  and q(q) are their eigenvectors: 

A(q) = (l/V)[(Q(-qo))Q(ao + 4)  + (Q(qo))Q(-qn + 4 1  
p(q) = (1/V)[(Q(-qo))Q(4o + 9) - (Q(So))Q(-qo + q)1 

( 4 4  
(4b)  

in which (Q(qo)) = ( q / l h )  exp( je) is the static distortion. Let us derive the symmetry 
of these modes. The soft-mode coordinates Q(Tqtl) transform according to the irre- 
ducible representation Z2 of the point group Gv(qo). The modesA(0) and 'p(0) have g 
and U characters, respectively. The product (Q(qo))Q(-qo) (or its conjugate complex) 
transforms like the identity representation Z l  of the point group which is correlated to 
the irreducible representations B,, and A, of the normal phase space group Djg. A(0) 
and 'p(0) areofA8-andB3,-type symmetry, respectively. The analysisofthe eigenvectors 
shows that these branches can be visualized as amplitude and (approximately) phase 
fluctuations of the primary distortion (Bruce and Cowley 1978). 

K2Se04 has a wide temperature range of incommensurate structure. This suggests 
that the sixth-order terms 

in the free-energy expansion of the normal phase (Iizumi er a1 1977) are small. (As we 
deal with the single branch Z2 the branch index has been omitted; the 6 function ensures 
wavevector conservation modulo a reciprocal lattice vector.) However, in order to 
explain the anomalous part of the elastic constant C5, which occurs near the lock-in 
phase transition, we need to take them into account under the form 

+ cc K = 6a* (6) 
in which four phonon coordinates have been frozen. The anharmoniccoefficient c which 
is a fraction of U@) is assumed to be q independent. We assume that it is positive. K 
determines the position in the reciprocal lattice of the satellite reflections. Terms (6) 
introduce gaps in  the amplitudon and the phason branches at qo * K as we are going to 
see. Usingthe eigenmodesA(q) and q(q) (equation (4)), terms (6) can be rewritten as 
follows: 

6F'= A [ A ( K + q ) A ( K - q ) + c p ( K + q ) ' p ( K - q ) ] + C C  (7) 
with A = Bcq4 exp( j60). Forsimplicity, terms corresponding Io the phason-amplitudon 
interaction energy have been omitted. The total increase in energy can be diagonalized 
once again. The four dispersion relations of the modes deduced from the dynamical 
matrix can be written in the condensed form 

[ Q : ( s K + q ) ] 2 = & 2 t ( K + q ) + Q t ( - K + q )  
T V[/[R:(K + q)  - Q f ( - K  + q) ]*  + 4/AI2}.  

The + sign refers to the upper branches while the - sign refers to the lower branches. 
The index i stands for 'p or A. The gap in the spectrum at qo K is equal to 2(Al.  The 
eigenvectors of the modes belonging to the lower phason and amplitudon branches are 
given, respectively, by 

w i q )  = ( 1 / f i \ / ~ ) [ e x ~ ( j ~  P(K + 4) + e x p ( - j ~  v ( - K +  411 
A-(q)  = (1/<2)[exp(j3@)A(Ktq) -exp(-j38)A(-K+ q)] 

( 9 4  
(9b) 
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while those belonging to the upper branches are given by 
q + (4) = (WT) [ e x p ( i 3 + ~ ( ~ + q )  - exp(-j38)d- K+ 411 (104 
A + ( q )  = ( l / d 2 )  [exp( j38)A(K+q) +exp(-jSB)A( - K +  q)]. (106) 

Thespectrum, showinga singlegapin each branch, isschematically representedinfigure 
1. Passing through the lock-in point transition, K vanishes and the phase variable is 
fixed. For the special choice 8 = $n, in the locked phase of K,SeO,, one can deduce 
from equations (9) and (10) that the upper amplitudon branch and the lower phason 
branch disappear from the spectrum. 

The phonon spectrum of TMAT-CU can be deduced from those of K2Se0,. Making a 
change in phase 38+ 38 + In (which corresponds to a change in sign of the coefficient 
c)inequations(9)and (lo), q-changes to qt andA-changestoA'andconversely. The 
symmetry of modes with wavevector 6a*,  which isdiscussed below, will be consequently 
interchanged in the case of TMAT-Cu. For 8 = 0 the lower phason branch and the upper 
amplitudon branch disappear from the phonon spectrum of the commensurate phase, 
as in the case of K,Se04. 

The symmetry of the new modes at the gap can be deduced as follows. Let us begin 
with the symmetry of the phason modes in the case of K,SeO,. The space group of the 
normal phase (DiE) contains the inversion operation. It transforms Q(q,) into Q( -40). 
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Table 1. The matrices of the representation of the space group Pnam with the star 
(ql =ha*, -qJ restricted to the basic translation aL = 3a. The basis consists of two 
linear combinations of the order parameter components (l/V%[Q(q.) + Q(-qJ] and 
(l/V?)[Q(qc) - Q(-qJ]. Q(9J belongs IO the &irreducible representation of the point 
group C,(qO)). The representation isdecomposed into two irreducible representations Bo 
and 8,. of the space group. r , ,  z2 and r ,  refer to the fractional translations &(a + b + c), 
t ( o  + b) andk ,  respectively. 

(EIO) (GICJ ( c w  (c;Iz,) (w) ( 4 r J  (+3 (oh3) 

B, ( I  0) (-1 0) (I 0) (-1 0) (I 0) (-1 0 1  0) (I 0 1  0) (-1 0 -1 0) 
B,u 0 1 0 -1 0 -1 0 1  0 - 1  

One can show that q - ( O )  has U character while q+(O) has g character. The symmetry of 
q - ( O )  (equation (9a)) depends on the symmetry of the product (Q(qO))’q(K) while the 
symmetry of q ( K )  (equation (4b)) depends on the symmetry of the product 
(e(-qo))Q(qo+ K ) .  This latter transforms under the effect of the symmetry operation 
R ,  which leaves qo invariant, as 

&,(R)&,(R) exp[jqo(t + 511 exp[-j(qo + K ) ( t  + r)l 
= Dr,(R)exp[-jK(t + t)] (11) 

in which t and t are the lattice translation and fractional translation, respectively, 
associated with the rotational symmetry operation R. Dz8(R) is the character of the 
representation 2,. From (ll), one can deduce that q ( K )  transforms like (&, K )  and 
consequently q - ( O )  transforms like 

Such a quantity transforms under the effect of the symmetry operation (Rlt + T) as 

&(R) is the character of the projective representation associated with R. One can see 
that [b,,(R)]’ exp(-ja*t) transforms like the irreducible representation 23 of Ck(q0) 
which is correlated to the irreducible representation B,, and B,, of the normal phase 
space group Dif. Taking account of the character of the phase modes, one can assert 
that q+(O) and q - ( O )  are of BZg- and BI,-type symmetry, respectively. Following the 
same procedure, one can find that A”(0)  and A-(0)  are of BZg- and B,,-type symmetry, 
respectively. 

Considering the change in phase 30- 30 + in, one can find that the phason and 
amplitudon with wavevectors 6a* belonging to the lower branch are of B,,-type sym- 
metrywhile thosebelongingtotheupperbranchareofB,,-typesymmetry. Asmentioned 
above, this situation is realized in TMAT-CU. 

Let us now investigate what type of symmetry the phonons implied in the lock-in 
phase transformation. For this purpose we refer to a theorem of Landau and Lifshitz 
(1967). As the space group order Go of the normal phase is twice the order of the 
subgroup G of the lockedphase, it possesses an irreducible representation which induces 
the totally symmetrical representation of the subgroup G Using two linear combinations 
of Q(qc, &) and Q(-q,, &) as the basis, one can easily obtain the matrices of rep- 
resentation of the symmetry operations belonging to the space group Go = Pnam (table 
1) and show that such representation decomposes into two irreducible representations 
BZg and Bl,of Dig (first and second lines, respectively, of the diagonalized matrices) 

(Q(qo))’(C,, K ) .  (12) 

[fizz ( R ) ]  ’ exp( - ja*c) 3q0 + 6a* =a* .  (13) 
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which are correlated to the identity representation of Ch andCq,, res- 
pectively. The direct transition from D# to C:, or C3" is due to the mode B,, or B,, 
respectively. This is in agreement with the symmetry of the amplitude mode which 
remains in the phonon spectrum of the locked phase and which belongs to the identity 
representation of the appropriate space group. 

M Hebbache and H Poulet 

3. Elastic anomalies in A,BX, compounds 

3.1. Elastic anomaly in K,SeO, 

In this section we are interested in the coupling between the shear deformation and the 
high-frequency phason in KZSe04 which is assumed to be a t  the origin of the downward 
step observed in the elastic constant Css at around the lock-in transition (Rehwald and 
Vonlanthen 1981, Lemanov et a[ 1986). Group theory shows that the strain exr interacts 
with the order parameter through a fourth-order coupling term (Iizumi et a1 1977) 

For simplicity the fourth-order anharmonic coupling coefficient will also be assumed to 
be q independent. The term (14) can be rewritten as follows: 

in which two phonon coordinates have been frozen. erZ(q) represents the shear wave 
while the normal coordinates Q(qo + K - q)  can be expressed in terms of phase and 
amplitude eigenmodes (equation (4)). The interaction energy can be rewritten as 
follows: 

0s(qoz:2, quz2,90&, K z 3 ) Q 3 ( q o ) e n ( K )  + CC. 

6Fc = 3%q2[exp(P@) Q(90 + K - s)exz(9)1 + CC 

(14) 

(15) 

6Fc = 3a~11'{exp(j3@)(1/~L)[A(K - 4) + d K  - s ) l  e J 9 )  
+ex~(-J3@)(1/~\ /Z)[A(-K+q)-gi(-K+q)le , , ( -q)}.  (16) 

Ultrasonic measurements are made at small wavevectors and the condition q K is 
realized. In the limit 9 = 0 the high-frequency phason and amplitudon have the same 
B,, symmetry as exz. The resulting elastic anomaly of C,, is then 

with 
ACsj = -%a?q4{1/[(Q;(K)12 + 1/[(Q2(K)lz} T >  T ,  (17) 

[Q:(K)I2 =b + f i K Z  
[Q2(K)I2 = \A1 + 2bqz + f , K 2 .  

The high-frequency phason (activated by a three-phonon process) has been observed 
by means of Raman scattering (Inoue and Ishibashi 1983). The decrease in its frequency 
as the  lock-in phase transition is approached from above is due to the decrease in K. The 
low-frequency mode observed in infrared spectra (Petzelt er a1 1979) is the phason with 
B,, symmetry. The continuity of the amplitude mode frequency is probably due to the 
small lock-in energy. The hardening of C,, below T ,  is due to the increase in the q = 0 
phason frequency (Inoue and Ishibashi 1983). 

3.2. Elastic anomaly in TMAT-CU 

TMAT-CU is an improper ferroelastic compound. The elastic constant C,, shows a clear 
change in slope at TI,  decreases rapidly within a few kelvins and reaches a minimum in 
the incommensurate phase (Rehwald and Vonlanthen 1985). The disappearance of C,, 
has been reported by Sawada et a1 (1980b). This behaviour suggests dispersive coupling 
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between an acoustic mode and a low-frequency mode while the narrow stability range 
of the incommensurate phase (about 6 K) suggests an important sixth-order lock-in 
energy. The shear mode e5 couples the low-frequency phason and amplitudon which are 
ofBZ,-type symmetry. The resulting acoustic anomaly is 

~c~~ = - m 4 { 1 / [ ( ~ ; ( ~ ) 1 2  + ~ / K Q A K ) I ~  (18) 
with 

[Q2;(K)J2 = -1Al t f I K ’  

[QA(K)]’ = -IA/ t 7.67’ t f , K ’ .  
In the case of TMAT-CU, K is temperature independent. The softening of the phason 
frequency is due to the increase in the gap IAl - v4. This leads to a decrease in the elastic 
constant in theincommensurate phase. Theminimumisprobablydue totherelaxational 
effects which have not been considered here. The hardening of C,, suggests that fourth- 
order coupling between strains and the order parameter involving the square of these 
parameters could play a role. The Raman spectra have been investigated by Gomez- 
Cuevas et al (1983). No low-frequency phonons, which are of interest to us, were 
detected. 

4. Conclusion 

Taking account of an Umklapp term in a Landau-type free energy we have shown the 
splitting of the phonon spectrum of the incommensurate structure and the symmetry of 
modes with wavevector da* .  The theoretical results have allowed us to study acoustic 
anomalies of CS5 in K,SeO, and TMAT-CU. We suggest that the origin of the acoustic 
anomaly in K2SeO4 near the lock-in phase transition is due to the behaviour of the upper 
phason branch and conversely the same acoustic anomaly in TMAT-CU is due to the 
behaviour of the lower phason branch. The model can be extended to other materials 
and used to study dielectric anomalies. 
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